Strong convergence of the thresholding scheme for the mean curvature flow of mean convex sets

نویسندگان

چکیده

Abstract In this work, we analyze Merriman, Bence and Osher’s thresholding scheme, a time discretization for mean curvature flow. We restrict to the two-phase setting convex initial conditions. sense of minimizing movements interpretation Esedoğlu Otto, show time-integrated energy approximation converge limit. As corollary, conditional convergence results Otto one authors become unconditional in case. Our are general enough handle extension scheme anisotropic flows which non-negative kernel can be chosen.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystalline mean curvature flow of convex sets

We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, sa...

متن کامل

Singularity Structure in Mean Curvature Flow of Mean Convex Sets

In this note we announce results on the mean curvature flow of mean convex sets in 3-dimensions. Loosely speaking, our results justify the naive picture of mean curvature flow where the only singularities are neck pinches, and components which collapse to asymptotically round spheres. In this note we announce results on the mean curvature flow of mean convex sets; all the statements below have ...

متن کامل

The Size of the Singular Set in Mean Curvature Flow of Mean-convex Sets

In this paper, we study the singularities that form when a hypersurface of positive mean curvature moves with a velocity that is equal at each point to the mean curvature of the surface at that point. It is most convenient to describe the results in terms of the level set flow (also called “biggest flow” [I2]) of Chen-Giga-Goto [CGG] and Evans-Spruck [ES]. Under the level set flow, any closed s...

متن کامل

The Nature of Singularities in Mean Curvature Flow of Mean-convex Sets

Let K be a compact subset of R, or, more generally, of an (n+1)-dimensional riemannian manifold. We suppose that K is mean-convex. If the boundary of K is smooth and connected, this means that the mean curvature of ∂K is everywhere nonnegative (with respect to the inward unit normal) and is not identically 0. More generally, it means that Ft(K) is contained in the interior of K for t > 0, where...

متن کامل

Non-collapsing in Mean-convex Mean Curvature Flow

We provide a direct proof of a non-collapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence. We follow [4] in defi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Calculus of Variations

سال: 2023

ISSN: ['1864-8258', '1864-8266']

DOI: https://doi.org/10.1515/acv-2022-0020